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PROBLEM STATEMENT

Numerous neurodegenerative diseases affect 
the structure of our brain 

Measure of thickness for AD (Alzheimer’s Disease)
and HC (healthy control). 
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Cortical thickness measurements 
allows the diagnosis of: 

• Alzheimer’s disease 
• Parkinson’s disease
• ... 

PROBLEM STATEMENT Voxel Image

3D Mesh
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EXISTING METHODS FreeSurfer
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EXISTING METHODS
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DeepCSR

Implicit Surface 
Representation

Mesh Prediction

Input Image
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EXISTING METHODS
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EXISTING METHODS

Voxel2Mesh
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EXISTING METHODS

Pixel2Mesh

2D Image

3D Predicted Mesh
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EXISTING METHODS

Pixel2Mesh
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EXISTING METHODS

Voxel2Mesh

3D Voxel Image
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UNet



EXISTING METHODS

Voxel2Mesh

Latent Feature Extraction
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EXISTING METHODS

Voxel2Mesh Deform + Unpool
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Voxel2Mesh Pipeline13 |



Voxel2Mesh Pipeline

Find segmentation boundaries using 
dilation algorithm

Generate ground truth mesh for 
Chamfer loss
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Voxel2Mesh Pipeline15 |

Training Losses

Evaluator



PROJECT AIMS

With Voxel2Mesh:

• Reproduce the results of the original paper

• Apply Voxel2Mesh to Cortical Surfaces

• (Maybe) see improvements in prediction speed/quality
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INITIAL RESULTS  - LIVER  (CHAOS DATASET)
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INITIAL RESULTS - HIPPOCAMPUS
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INITIAL RESULTS - EVALUATION

• RuntimeError: CUDA out of memory. Tried to allocate 1.35 GiB. 
(GPU 0; 15.90 GiB total capacity; 13.63 GiB already allocated; 
1.19 GiB free; 13.89 GiB reserved in total by PyTorch)
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INITIAL RESULTS - EVALUATION

• RuntimeError: CUDA out of memory. Tried to allocate 1.35 GiB. 
(GPU 0; 15.90 GiB total capacity; 13.63 GiB already allocated; 
1.19 GiB free; 13.89 GiB reserved in total by PyTorch)

42.5 5.7 x 10-2 75.4 2.3 x 10-3Voxel2Mesh on Bracewell

IoU: Rasterized intersection over union e.g. Jaccard
Cf: Chamfer loss or point to point distance20 |



INITIAL RESULTS - EVALUATION

Main issues:

• Limitations in memory
• Lack of flexibility in model geometry
• Alignment between prediction and original image
• Low down-sampled resolution of images
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INITIAL RESULTS - EVALUATION

Learnings from my first machine learning model:

• What a PyTorch machine learning model ‘looks like’

• Scientific code from GitHub…

• Must keep track of trials and experiments

• Anatomical planes and LPS/RAS coordinate systems

• Working with Bracewell
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PROJECT AIMS

With Voxel2Mesh:

• Reproduce the results of the original paper

• Apply Voxel2Mesh to Cortical Surfaces

• (Maybe) see improvements in prediction speed/quality
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APPLY VOXEL2MESH TO CORTICAL SURFACES

Modifications to Voxel2Mesh:

• Move model to RTX 3090 J

• Model a single hemisphere of a cortical surface at a time

• Modify ground truth from .PNGs to .OBJ
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APPLY VOXEL2MESH TO CORTICAL SURFACES

25 |



26 |



27 |



28 |



29 |

Training Losses

Evaluator



APPLY VOXEL2MESH TO CORTICAL SURFACES
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APPLY VOXEL2MESH TO CORTICAL SURFACES
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APPLY VOXEL2MESH TO CORTICAL SURFACES
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PROJECT AIMS

With Voxel2Mesh:

• Reproduce the results of the original paper

• Apply Voxel2Mesh to Cortical Surfaces

• (Maybe) see improvements in prediction speed/quality
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FINE TUNING THE MODEL

Cross Entropy Loss
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FINE TUNING THE MODEL

Chamfer Loss
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where 𝐴, 𝐵 are sets of points
𝑑# 𝑖 = Minimum distance between i

and some point in B
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FINE TUNING THE MODEL

Normal Consistency Loss

𝐿!" 𝐹#, 𝐹$ = 1 − cos(𝑁#, 𝑁$)

where Ni is the normal of a face Fi
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FINE TUNING THE MODEL

Edge Loss

Edge Loss =2
#

𝐿%&'%(𝑖)
(

𝑊here 𝐿&,-&(𝑖) = 𝐿.#'-&. − 𝐿(

𝐿( is length of edge i

𝐿%&'()% is target length
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FINE TUNING THE MODEL

Laplacian Loss

𝐿/#0 𝑣 =
1

|𝒩 𝑣 |
(

1 ∈𝒩(4)

𝑤 − 𝑣

where 𝑑 𝑣,𝑤 is the distance between two vertices
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

A 1 0 0 0 0

B 0 1 0 0 0

C 0 0 1 0 0

D 0 0 0 1 0

E 0 0 0 0 1

Losses in isolation
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

A 1 1 0 0 0

B 1 0 1 0 0

C 1 0 0 1 0

D 1 0 0 0 1

Chamfer loss + isolated losses
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

A 1 1 1 0 0

B 1 1 0 1 0

C 1 1 0 0 1

Chamfer Loss and Cross Entropy
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

A 1 1 0 0.3 0

B 1 1 0 0.03 0

C 1 1 0 0.003 0

Tune edge loss
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

1 1 0 0.03 0

1 0.5 0 0.03 0

1 0.2 0 0.03 0

1 0.1 0 0.03 0

Tune Cross Entropy
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FINE TUNING THE MODEL
Edge Length

A 0.3

B 0.03

C 0.02

D 0.04

Tune edge length
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

1 1 0 0.3 0.0001

1 1 0 0.3 0.001

1 1 0 0.3 0.01

1 1 0 0.3 0.1

1 1 0.0001 0.3 0

1 1 0.001 0.3 0

1 1 0.01 0.3 0

1 1 0.1 0.3 0

1 1 0 0.3 0

1 1 0 0.2 0

1 1 0 0.1 0
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FINE TUNING THE MODEL
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FINE TUNING THE MODEL
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FINE TUNING THE MODEL
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FINE TUNING THE MODEL

50 |



FINE TUNING THE MODEL
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

1 1 0 0.3 0.0001

1 1 0 0.3 0.001

1 1 0 0.3 0.01

1 1 0 0.3 0.1

1 1 0.0001 0.3 0

1 1 0.001 0.3 0
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1 1 0.1 0.3 0

1 1 0 0.3 0

1 1 0 0.2 0

1 1 0 0.1 0
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FINE TUNING THE MODEL

β_Ch β_CE β_Lap β_Edg β_Ncn

A 1 1 0 0.3 0

Our best result!
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FINAL RESULTS (4 steps on RTX 3090)
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FINAL RESULTS (4 steps on RTX 3090)
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NUMERICAL RESULTS
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NUMERICAL RESULTS
Type Top Iteration Mean Std.
LW 330 0.752 0.012

RP 150 0.810 0.017

RW 330 0.745 0.012

LP 225 0.820 0.017
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NUMERICAL RESULTS
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NUMERICAL RESULTS
Type Top Iteration Mean Std.
LW 330 5.58 x 10-4 4.38 x 10-5

RP 330 6.92 x 10-4 4.44 x 10-5

RW 330 5.76 x 10-4 3.13 x 10-5

LP 225 6.54 x 10-4 3.43 x 10-5
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• Our results compare favourably to original Voxel2Mesh IoU and Chamfer 
Loss

• Significantly decreased inference time 4.8s in comparison to DeepCSR and 
FreeSurfer

NUMERICAL METRICS
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• Our results compare favourably to original Voxel2Mesh IoU and Chamfer 
Loss

• Significantly decreased inference time 4.8s in comparison to DeepCSR and 
FreeSurfer

NUMERICAL METRICS
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COMPARISON TO DEEPCSR

• 14.7K vs. 900K vertices

• 29.4K vs. 1.9M faces

• Quality/detail is no 
comparison 

64 |



LEARNINGS AND FURTHER IMPROVEMENTS

• Mesh deformation is able to successfully generate models of 
cortical surfaces

• Voxel2Mesh is fast

• The biggest limitation to Voxel2Mesh is GPU memory usage

• CorticalFlow

65 |



FINAL RESULTS
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