Australia's National Science Agency

Cortical Surface Retrieval via Deformable Models

A Vacation Student Project

Darren Fu, Rodrigo Santa Cruz, Leo Lebrat, Jurgen Fripp, and Olivier Salvado

🔀 d.fu@uq.net.au

THE AUSTRALIAN **E**•**HEALTH** RESEARCH CENTRE

PROBLEM STATEMENT

Numerous neurodegenerative diseases affect the structure of our brain

Measure of thickness for AD (Alzheimer's Disease) and HC (healthy control).

PROBLEM STATEMENT

Cortical thickness measurements allows the diagnosis of:

- Alzheimer's disease
- Parkinson's disease

...

3D Mesh

CSIRO

Input Image

Implicit Surface Representation

x ₀	Y o	z ₀	
X 1	y 1	Z 1	
•	•	•	
•	•	0 0	

Mesh Prediction

2D Image

Pixel2Mesh

Pixel2Mesh

UNet

Voxel2Mesh Pipeline

Voxel2Mesh Pipeline

Voxel2Mesh Pipeline

With Voxel2Mesh:

- Reproduce the results of the original paper
- Apply Voxel2Mesh to Cortical Surfaces
- (Maybe) see improvements in prediction speed/quality

INITIAL RESULTS - LIVER (CHAOS DATASET)

INITIAL RESULTS - HIPPOCAMPUS

RuntimeError: CUDA out of memory. Tried to allocate 1.35 GiB. (GPU 0; 15.90 GiB total capacity; 13.63 GiB already allocated; 1.19 GiB free; 13.89 GiB reserved in total by PyTorch)

•

•

RuntimeError: CUDA out of memory. Tried to allocate 1.35 GiB. (GPU 0; 15.90 GiB total capacity; 13.63 GiB already allocated; 1.19 GiB free; 13.89 GiB reserved in total by PyTorch)

	Liv	ver	Hippocampus		
	IoU	Cf.	IoU	Cf.	
$\mathbf{PS} + \mathbf{UMU}$	83.3 ± 0.8	3.3×10^{-3}	78.8 ± 1.1	2.9×10^{-3}	
HS + UMU	84.2 ± 0.6	2.8×10^{-3}	79.9 ± 0.9	2.3×10^{-3}	
$\mathbf{LNS} + \mathbf{UMU}$	85.6 ± 0.9	2.1×10^{-3}	81.2 ± 1.2	1.8×10^{-3}	
$[{\bf LNS} + {\bf AMU} \ ({\bf Voxel2Mesh})$	$\textbf{86.9} \pm \textbf{1.1}$	$1.3 imes 10^{-3}$	$\textbf{82.3}\pm\textbf{0.9}$	1.1×10^{-3}	
Voxel2Mesh on Bracewell	42.5	5.7 x 10 ⁻²	75.4	2.3 x 10 ⁻³	

Main issues:

- Limitations in memory
- Lack of flexibility in model geometry
- Alignment between prediction and original image
- Low down-sampled resolution of images

Learnings from my first machine learning model:

- What a PyTorch machine learning model 'looks like'
- Scientific code from GitHub...
- Must keep track of trials and experiments
- Anatomical planes and LPS/RAS coordinate systems
- Working with Bracewell

With Voxel2Mesh:

- Reproduce the results of the original paper
- Apply Voxel2Mesh to Cortical Surfaces

• (Maybe) see improvements in prediction speed/quality

Modifications to Voxel2Mesh:

- Move model to RTX 3090 $\ensuremath{\textcircled{\odot}}$
- Model a single hemisphere of a cortical surface at a time
- Modify ground truth from .PNGs to .OBJ

.NII File

.OBJ File

PROJECT AIMS

With Voxel2Mesh:

- Reproduce the results of the original paper
- Apply Voxel2Mesh to Cortical Surfaces
- (Maybe) see improvements in prediction speed/quality

CSIRO

$$\mathrm{loss}(x, class) = -\log\left(rac{\mathrm{exp}(x[class])}{\sum_{j}\mathrm{exp}(x[j])}
ight)$$

$$ext{loss} = rac{\sum_{i=1}^{N} loss(i, class[i])}{\sum_{i=1}^{N} weight[class[i]]}$$

Binary Segmentation

Prediction

Cross Entropy Loss

$$D_{chamfer}(A,B) = \frac{1}{|A|} \sum_{i \in A} d_B(i) + \frac{1}{|B|} \sum_{j \in B} d_A(j)$$

where A, B are sets of points $d_B(i) =$ Minimum distance between i and some point in B

Chamfer Loss

$$L_{nc}(F_i, F_j) = 1 - \cos(N_i, N_j)$$

where N_i is the normal of a face F_i

Normal Consistency Loss

Edge Loss =
$$\sum_{i} |L_{edge}(i)|^2$$

Where $L_{edge}(i) = L_{target} - L_i$
 L_{target} is target length

 L_i is length of edge i

ъ

Edge Loss

$$L_{lap}(v) = \frac{1}{|\mathcal{N}(v)|} \sum_{w \in \mathcal{N}(v)} w - v$$

where d(v, w) is the distance between two vertices

	β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
Α	1	0	0	0	0
В	0	1	0	0	0
С	0	0	1	0	0
D	0	0	0	1	0
Е	0	0	0	0	1

Losses in isolation

	β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
Α	1	1	0	0	0
В	1	0	1	0	0
С	1	0	0	1	0
D	1	0	0	0	1

Chamfer loss + isolated losses

	β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
Α	1	1	1	0	0
В	1	1	0	1	0
С	1	1	0	0	1

Chamfer Loss and Cross Entropy

	β_Ch	β_CE	β_Lap	β_Edg	β_Ncn
Α	1	1	0	0.3	0
В	1	1	0	0.03	0
С	1	1	0	0.003	0

β_Ch	β_CE	β_Lap	β_Edg	β_Ncn
1	1	0	0.03	0
1	0.5	0	0.03	0
1	0.2	0	0.03	0
1	0.1	0	0.03	0

Tune Cross Entropy

	Edge	Length
Α	0.3	
В	0.03	
С	0.02	
D	0.04	

Tune edge length

β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn	A	B	c	D
1	1	0	0.3	0.0001				
1	1	0	0.3	0.001	Charles and a	and the state	Cart	TAX
1	1	0	0.3	0.01				
1	1	0	0.3	0.1				
1	1	0.0001	0.3	0				
1	1	0.001	0.3	0				
1	1	0.01	0.3	0				CAR'S
1	1	0.1	0.3	0			02	
1	1	0	0.3	0				
1	1	0	0.2	0				
1	1	0	0.1	0				

CSIRO

β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
1	1	0	0.3	0.0001
1	1	0	0.3	0.001
1	1	0	0.3	0.01
1	1	0	0.3	0.1
1	1	0.0001	0.3	0
1	1	0.001	0.3	0
1	1	0.01	0.3	0
1	1	0.1	0.3	0
1	1	0	0.3	0
1	1	0	0.2	0
1	1	0	0.1	0

β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
1	1	0	0.3	0.0001
1	1	0	0.3	0.001
1	1	0	0.3	0.01
1	1	0	0.3	0.1
1	1	0.0001	0.3	0
1	1	0.001	0.3	0
1	1	0.01	0.3	0
1	1	0.1	0.3	0
1	1	0	0.3	0
1	1	0	0.2	0
1	1	0	0.1	0

	β_Ch	β_CΕ	β_Lap	β_Edg	β_Ncn
Α	1	1	0	0.3	0

Our best result!

FINAL RESULTS

(4 steps on RTX 3090)

FINAL RESULTS

(4 steps on RTX 3090)

NUMERICAL RESULTS

CSIRO

NUMERICAL RESULTS

NUMERICAL RESULTS

CSIRO

• Our results compare favourably to original Voxel2Mesh IoU and Chamfer Loss

	Li	ver	Hippocampus		
	IoU	Cf.	IoU	Cf.	
PS + UMU	83.3 ± 0.8	3.3×10^{-3}	78.8 ± 1.1	2.9×10^{-3}	
HS + UMU	84.2 ± 0.6	2.8×10^{-3}	79.9 ± 0.9	2.3×10^{-3}	
LNS + UMU	85.6 ± 0.9	2.1×10^{-3}	81.2 ± 1.2	1.8×10^{-3}	
$\boxed{\mathbf{LNS} + \mathbf{AMU}} (\mathbf{Voxel2Mesh})$	$\overline{\textbf{86.9}~\pm~\textbf{1.1}}$	$1.3 imes 10^{-3}$	$\textbf{82.3} \pm \textbf{0.9}$	$1.1 imes 10^{-3}$	

• Significantly decreased inference time **4.8s** in comparison to DeepCSR and FreeSurfer

	Precision on TRT			Accuracy	Runtime	
Method	AD(mm)	$\% > 1 \ mm$	% > 2mm	Dice	VS	(minutes)
FracSurfar	0.241	9 479	0.082	0.841	0.953	373.86
FreeSurier	(± 0.291)	2.472	0.903	(± 0.020)	(± 0.027)	(± 47.64)
FactSurfer	0.204	1 402	0.274	0.834	0.942	28.943
PastSuffer	(± 0.028)	1.452	0.014	(± 0.021)	(± 0.029)	(± 13.281)
DeenCSP	0.193	1 966	0.263	0.846	0.958	27.824
DeepCSK	(± 0.051)	1.200		(± 0.019)	(± 0.024)	(± 1.393)

• Our results compare favourably to original Voxel2Mesh IoU and Chamfer Loss

	Li	ver	Hippocampus		
	IoU	Cf.	IoU	Cf.	
PS + UMU	83.3 ± 0.8	3.3×10^{-3}	78.8 ± 1.1	2.9×10^{-3}	
HS + UMU	84.2 ± 0.6	2.8×10^{-3}	79.9 ± 0.9	2.3×10^{-3}	
LNS + UMU	85.6 ± 0.9	2.1×10^{-3}	81.2 ± 1.2	1.8×10^{-3}	
$\boxed{\mathbf{LNS} + \mathbf{AMU}} (\mathbf{Voxel2Mesh})$	$\overline{\textbf{86.9}~\pm~\textbf{1.1}}$	$1.3 imes 10^{-3}$	$\textbf{82.3} \pm \textbf{0.9}$	$1.1 imes 10^{-3}$	

 Significantly decreased inference time 4.8s in comparison to DeepCSR and FreeSurfer

	Precision on TRT			Accuracy	Runtime	
Method	AD(mm)	$\% > 1 \ mm$	% > 2mm	Dice	VS	(minutes)
FracSurfar	0.241	9 479	0.082	0.841	0.953	373.86
FreeSurier	(± 0.291)	2.472	0.903	(± 0.020)	(± 0.027)	(± 47.64)
FactSurfer	0.204	1 402	0.274	0.834	0.942	28.943
PastSuffer	(± 0.028)	1.452	0.014	(± 0.021)	(± 0.029)	(± 13.281)
DeenCSP	0.193	1 966	0.263	0.846	0.958	27.824
DeepCSK	(± 0.051)	1.200		(± 0.019)	(± 0.024)	(± 1.393)

• Our results compare favourably to original Voxel2Mesh IoU and Chamfer Loss

	Li	ver	Hippocampus					
	IoU Cf.		IoU	Cf.				
PS + UMU	83.3 ± 0.8	3.3×10^{-3}	78.8 ± 1.1	2.9×10^{-3}				
HS + UMU	84.2 ± 0.6	2.8×10^{-3}	79.9 ± 0.9	2.3×10^{-3}				
LNS + UMU	05.6 ± 0.9	2.1×10^{-3}	81.2 ± 1.2	1.8×10^{-3}				
LNS + AMU (Voxel2Mes)	$ 86.9\pm1.1$	$1.3 imes 10^{-3}$	$\textbf{82.3}\pm\textbf{0.9}$	$1.1 imes 10^{-3}$				

 Significantly decreased inference time 4.8s in comparison to DeepCSR and FreeSurfer

	Precision on TRT			Accuracy	Runtime	
Method	AD (mm)	$\% > 1 \ mm$	% > 2mm	Dice	VS	(minutes)
FracSurfar	0.241	9 479	0.082	0.841	0.953	373.86
FreeSurier	(± 0.291)	2.472	0.965	(± 0.020)	(± 0.027)	(± 47.64)
FactSurfer	0.204	1 409	0.274	0.834	0.942	28.943
PastSuffer	(± 0.028)	1.492	0.574	(± 0.021)	(± 0.029)	(± 13.281)
DeenCSP	0.193	1 966	0.263	0.846	0.958	27.824
DeepCSK	(± 0.051)	1.200		(± 0.019)	(± 0.024)	(± 1.393)

• Our results compare favourably to original Voxel2Mesh IoU and Chamfer Loss

	Li	ver	Hippocampus		
	IoU	Cf.	IoU	Cf.	
PS + UMU	83.3 ± 0.8	3.3×10^{-3}	78.8 ± 1.1	2.9×10^{-3}	
HS + UMU	84.2 ± 0.6	2.8×10^{-3}	79.9 ± 0.9	2.3×10^{-3}	
LNS + UMU	85.6 ± 0.9	2.1×10^{-3}	81.2 ± 1.2	1.8×10^{-3}	
LNS + AMU (Voxel2Mesh)	$\textbf{86.9} \pm \textbf{1.1}$	$1.3 imes 10^{-3}$	$\textbf{82.3}\pm\textbf{0.9}$	$1.1 imes 10^{-3}$	

 Significantly decreased inference time 4.8s in comparison to DeepCSR and FreeSurfer

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Precision on TRT			Accuracy	Runtime	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Method	AD (mm)	$\% > 1 \ mm$	% > 2mm	Dice	VS	(minutes)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FragSurfar	0.241	9 479	0.082	0.841	0.953	373.86
FastSurfer $0.204 \\ (\pm 0.028)$ 1.492 0.374 $0.834 \\ (\pm 0.021)$ $0.942 \\ (\pm 0.029)$ $28.943 \\ (\pm 13.281)$ DeepCSR $0.193 \\ (\pm 0.051)$ 1.266 0.263 $0.846 \\ (\pm 0.019)$ $0.958 \\ (\pm 0.024)$ $27.824 \\ (\pm 1.393)$	FleeSullel	(± 0.291)	2.472	0.985	(± 0.020)	(± 0.027)	(± 47.64)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	FastSurfer	0.204	1 402	0.374	0.834	0.942	28.943
DeepCSR $0.193 \\ (\pm 0.051)$ 1.266 0.263 $0.846 \\ (\pm 0.019)$ $0.958 \\ (\pm 0.024)$ $27.824 \\ (\pm 1.393)$	PastSuffer	(± 0.028)	1.432	0.014	(± 0.021)	(± 0.029)	(± 13.281)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DeenCSP	0.193	1 966	0.263	0.846	0.958	27.824
	DeepCSK	(± 0.051)	1.200		(± 0.019)	(± 0.024)	(± 1.393)

COMPARISON TO DEEPCSR

- 14.7K vs. 900K vertices
- 29.4K vs. 1.9M faces
- Quality/detail is no comparison

LEARNINGS AND FURTHER IMPROVEMENTS

- **Mesh deformation** is able to successfully generate models of cortical surfaces
- Voxel2Mesh is fast
- The biggest limitation to Voxel2Mesh is GPU memory usage
- CorticalFlow

FINAL RESULTS

Australia's National Science Agency

Cortical Surface Retrieval via Deformable Models

A Vacation Student Project

Darren Fu, Rodrigo Santa Cruz, Leo Lebrat, Jurgen Fripp, and Olivier Salvado

🔀 d.fu@uq.net.au

THE AUSTRALIAN **E**•**HEALTH** RESEARCH CENTRE

